On the divisor function and the Riemann zeta-function in short intervals

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Divisor Function and the Riemann Zeta-function in Short Intervals

We obtain, for T ε ≤ U = U(T ) ≤ T 1/2−ε, asymptotic formulas for Z 2T T (E(t+ U)− E(t)) dt, Z 2T T (∆(t+ U)−∆(t)) dt, where ∆(x) is the error term in the classical divisor problem, and E(T ) is the error term in the mean square formula for |ζ( 1 2 + it)|. Upper bounds of the form Oε(T 1+εU2) for the above integrals with biquadrates instead of square are shown to hold for T 3/8 ≤ U = U(T ) ≪ T ...

متن کامل

On the Riemann Zeta-function and the Divisor Problem Iii

Let ∆(x) denote the error term in the Dirichlet divisor problem, and E(T) the error term in the asymptotic formula for the mean square of |ζ(1 2 + it)|. If E * (t) = E(t) − 2π∆ * (t/2π) with ∆ * (x) = −∆(x) + 2∆(2x) − 1 2 ∆(4x) and we set T 0 E * (t) dt = 3πT /4 + R(T), then we obtain R(T) = O ε (T 593/912+ε), T 0 R 4 (t) dt ≪ ε T 3+ε , and T 0 R 2 (t) dt = T 2 P 3 (log T) + O ε (T 11/6+ε), whe...

متن کامل

On the Riemann Zeta-function and the Divisor Problem Iv

Let ∆(x) denote the error term in the Dirichlet divisor problem, and E(T ) the error term in the asymptotic formula for the mean square of |ζ( 1 2 + it)|. If E∗(t) = E(t)− 2π∆∗(t/2π) with ∆∗(x) = −∆(x) + 2∆(2x)− 1 2 ∆(4x), then it is proved that

متن کامل

On the Riemann Zeta-function and the Divisor Problem Ii

Let ∆(x) denote the error term in the Dirichlet divisor problem, and E(T ) the error term in the asymptotic formula for the mean square of |ζ( 1 2 + it)|. If E∗(t) = E(t) − 2π∆∗(t/2π) with ∆∗(x) = −∆(x) + 2∆(2x) − 1 2 ∆(4x), then we obtain ∫ T 0 |E(t)| dt ≪ε T 2+ε and ∫ T 0 |E∗(t)| 544 75 dt ≪ε T 601 225 . It is also shown how bounds for moments of |E∗(t)| lead to bounds for moments of |ζ( 1 2 ...

متن کامل

On the Riemann Zeta-function and the Divisor Problem

Let ∆(x) denote the error term in the Dirichlet divisor problem, and E(T ) the error term in the asymptotic formula for the mean square of |ζ( 1 2 + it)|. If E∗(t) = E(t) − 2π∆∗(t/2π) with ∆∗(x) = −∆(x) + 2∆(2x) − 1 2 ∆(4x), then we obtain ∫ T 0 (E(t)) dt ≪ε T . We also show how our method of proof yields the bound R

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Ramanujan Journal

سال: 2008

ISSN: 1382-4090,1572-9303

DOI: 10.1007/s11139-008-9142-0